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Abstract

Background: Wilms' tumor is an embryonal neoplasm of the kidney that accounts for approximately 6 % of all
childhood tumors. The chemokine CXCL12 (C-X-C chemokine ligand 12) and its ligand CXCR4 (C-X-C chemokine
receptor type 4) are involved in the development of several organs, including the kidney, and are also associated
with tumor growth and metastasis. FOXP3 (forkhead transcription factor 3) was initially described as a marker for
regulatory T cells; however, its expression in several types of tumor cells has already been described and may have
prognostic significance. The aim of the present study was to analyze rs3761548 and rs2232365 FOXP3
polymorphisms, as well as evaluate rs1801157 CXCL12 polymorphism in Wilms' tumor samples.

Methods: Polymorphisms were evaluated in 32 patients and 78 neoplasia-free controls. Genotypes of rs1801157
were determined using PCR-restriction fragment length polymorphism (PCR-RFLP) method, and genotypes of
rs2232365 and rs3761548 were determined using allele-specific PCR (AS-PCR).

Results: The case-control study indicated a significant association for allele A carriers of rs1801157 polymorphism in
relation to Wilms' tumor susceptibility (OR=5.261; 95 % Cl 2.156 to 12.84; p=0.0002). The opposite was observed in
male carriers of G allele for rs2232365 polymorphism (OR 0.1164; 95 % Cl 0.0227 to 0.5954; p =0.0091) or when
male and female subjects were analyzed (OR=0.1304; 95 % CI 0.05013 to 0.3394; p < 0.0001).

Conclusions: All in all, these markers may contribute to this neoplasia susceptibility and progression; however,
further studies are needed to real clarify their role in Wilms' tumor pathogenesis.
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Background
Childhood cancers differ from adult malignant neoplasia
in several aspects, such as in primary and histological or-
igins and, also, in clinical outcomes, suggesting they
have to be studied independently from adult cancer [1].
Besides, their early onset suggest a low exposition to risk
factors, indicating that genetic alterations may have
major influences in childhood tumor development [2].
The Wilms’ tumor (WT) develops from nephroblastic
remnants, and it is characterized as an embryonal tumor,
composed of persistent blastema, dysplastic tubules, and
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supporting mesenchyme or stroma [3]. It accounts for
approximately 6 % of all childhood tumors [4], and its
incidence corresponds to 1 in 10,000 children. The ma-
jority of WT are usually unilateral and sporadic, with
only 1 % considered hereditary [5].

The tumor microenvironment is composed of neoplas-
tic and stromal cells and a great number of immune
cells. Interactions among tumor microenvironment com-
ponents are an emerging issue in tumor progression, in-
fluencing growth, invasiveness, and metastatic process
[6]. Understanding these complex networks is extremely
important for prognostic markers discovery and devel-
opment of new therapeutic strategies [7].

Chemokines play a major role in several homeostatic
[8], pathological [9], and developmental processes [10].
Among them, C-X-C chemokine ligand 12 (CXCL12)
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and its receptor C-X-C chemokine receptor type 4
(CXCR4) seem to be involved in the development of sev-
eral organs [11, 12], including kidney [13], and they are
also related to tumor growth [14] and metastatic process
in many types of cancer [15]. Some authors have investi-
gated polymorphisms of CXCLI2 in disease pathogen-
esis, including cancer, [16] but its value as a
susceptibility marker is not well determined.

The forkhead box protein 3 (FOXP3) is a transcription
factor that has a fundamental role on the regulation and
development of the immune system [17, 18]. Although it
was first described as restricted to hematopoietic lineages,
recent studies have shown FOXP3 expression in several
tissues, including tumor cells [19-21], and it has also been
suggested a nuclear or cytoplasmic localization, which can
be related with patient prognosis [22].

Genetic analysis of some diseases like psoriasis [23]
and breast cancer [24] showed significant association
with the single nucleotide polymorphisms (SNP)
rs3761548 (-3279 C/A) and rs2232365 (-924 A/G) of
FOXP3 gene [25]. The study of these allelic variants can
elucidate the role of such polymorphisms in several
pathologies, including cancer, concerning to susceptibil-
ity, and prognosis.

Recently, a crosstalk between FOXP3 and CXCR4 has
been described by Douglass et al. [26]. They demon-
strated that downregulated FOXP3 cells have increased
CXCR4 expression, and their migration toward CXCL12
gradient is higher when compared with cells who
expressed higher FOXP3 levels.

The present study aimed to analyze two polymor-
phisms in FOXP3 and one polymorphism in CXCLI2 in
WT samples, in a search for new possible molecular
markers to this childhood neoplasia.

Methods

Human subjects

A total of 32 paraffin-embedded samples containing nor-
mal and tumor tissues was obtained at University Hospital
of the State University of Londrina, Londrina, Parani,
Brazil. Clinical data presented (age, tumor size, and gen-
der) were obtained from clinical pathological reports. For
control group, blood samples from 78 neoplasia-free indi-
viduals were collected at the same region, with an in-
formed consent signed by their parents. This study was
conducted following approval from the Human Ethics
Committee of State University of Londrina (CEP/UEL
189/2013 — CAAE 17123113400005231), which was in
compliance with the declaration of Helsinki.

DNA extraction

Genomic DNA was isolated from formalin-fixed paraffin-
embedded samples, according to innuPREP DNA Mini
Kit (Analytik Jena AG, Jena, Germany) protocol, following
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manufacturer’s instructions. For neoplasia-free control
group, DNA was obtained from peripheral blood white
cells using the extraction kit Mini Spin (Biometrix, Curi-
tiba, PR, Brazil), according to manufacturer’s instructions.
All DNA samples were quantified in NanoDrop 2000°
(NanoDrop Technologies, Wilmington, DE, USA).

Genotyping of CXCL12 and FOXP3 polymorphisms
Genotypes of rs1801157 were determined using poly-
merase chain reaction (PCR)-restriction fragment length
polymorphism (PCR-RFLP) method, and genotypes of
rs2232365 and rs3761548 were determined using allele-
specific PCR (AS-PCR) [23, 27]. Reactions were per-
formed with 100 ng of genomic DNA, 100 pM dNTP,
150 pM of each primer (Table 1), MgCl, 1.5 mM, buffer
10 %, and 1.25 units of Taq DNA polymerase (Invitro-
gen, Carlsbad, CA, USA), in a thermocycler A200 Gradi-
ent Thermal Cycler (LongGene, Hangzhou, China). PCR
products of CXCL12 were subjected to restriction diges-
tion by incubation with Mspl (10 U) (Promega, Madison,
WI, USA) during 4 h at 37 °C. All PCR products were
analyzed by electrophoresis on polyacrylamide gel (10 %)
and detected using a silver staining method.

AS-PCR for FOXP3 polymorphisms were confirmed
by randomly sequencing in 15 % of the samples. After
amplification, PCR products were purified using Pure-
Link™ PCR Purification Kit (Invitrogen), following manu-
facturer instructions. The sequencing reaction was
performed using BigDye® Terminator v3.1 Cycle Sequen-
cing Kit (Applied Biosystems®, Foster City, CA, USA),
50 ng of DNA template and 5 pM of primer (forward or
reverse) in a final volume of 10 pl. PCR conditions were
as follows: 5 min denaturing at 95 °C, 30 cycles of 20 s
at 95 °C, 20 s at 50 °C, and 1 min at 60 °C. The ampli-
cons were sequenced in a 24-capillary 3500xl Genetic
Analyzer (Applied Biosystems).

Statistical analysis

Case-control study association was assessed through odds
ratio (OR) analysis, adopting 95 % confidence interval
(CI), and Fisher’s exact test, performed using Prism 6 for
Windows (GraphPad Software, San Diego, CA, USA).
Since FOXP3 gene in humans is located in the p-arm of
the X-chromosome at Xp.11.23, polymorphism analysis
was performed separately for genders. p value <0.05 was
considered statistically significant.

Results

This retrospective study evaluated 32 tissue samples of
pathologically confirmed patients diagnosed with WT be-
tween January 1990 and December 2013. The mean age at
diagnosis was 45 months (range 1 year—13 vyears), and
more than 76 % of cases diagnosed before the age of
5 years old, which is in accordance with literature data [5].
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Table 1 Primer sequences of FOXP3 and CXCL12 genes
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Primer sequence

PCR product

RFLP-PCR rs1801157 5-CAGTCAACCTGGGCAAAGCC-3' 293 bp
cxcLi2 5-CCTGAGAGTCCTTTTGCGGG-3'
5-CTGGCTCTCTCCCCAACTGA-3' Allele A 334 bp
rs3761548 5'-ACAGAGCCCATCATCAGACTCTCTA-3
FOXP3 5-TGGCTCTCTCCCCAACTGC-3' Allele C 333 bp
5'-ACAGAGCCCATCATCAGACTCTCTA-3
AoPCR 5'-CCCAGCTCAAGAGACCCCA-3' Allele A 442 bp
152232365 5-GGGCTAGTGAGGAGGCTATTGTAAC-3'
FOXP3 5-CCAGCTCAAGAGACCCCG-3' Allele G 427 bp
5-GCTATTGTAACAGTCCTGGCAAGTG-3'
153761548 5-TCTCCGTGCTCAGTGTAGAA-3' 330 bp
FOXP3 5"-AACTAGGCCTCCTGACCTATG-3'
Sequencing
rs2232365 5'-AGAAGGAGTGGGCATTTGAG-3' 284 bp
FOXP3 5-GCAGGTGTAGATAGACATGAAGAG-3'

Nineteen (59.37 %) tumoral tissues were obtained from
female patients and 13 (40.63 %) were from male patients.
Information regarding tumor size was recovered from 25
(78.12 %) samples, once records available through the hos-
pital were not necessarily historically complete or present.
This parameter ranged from 6 to 20.5 cm, with an average
of 8 cm, which was used to perform the analysis in rela-
tion to genetic variants. From 25 samples, seven (28 %)
had tumor size less than or equal to 8 cm and 18 (72 %)
had tumor size larger than 8 cm.

Likewise, not all data regarding capsular invasion (1 =
17), metastasis (n = 11), lymph node involvement (n = 18),
and staging (1 =22) were available. Such parameters are
summarized in Table 2.

Considering WT histology, ten samples were classified
as blastemal, six samples presented mixed type, four
samples were epithelial, and two monophasic tumors
(cells with vesicular nuclei, visible nucleoli, and acidic
cytoplasm). It has not been possible to obtain ten sam-
ples data regarding tumor histological classification. The
preoperative chemotherapy was used in four samples.

In the control group, children and adolescents (age
average 12 years old) were included according to nega-
tive hematological, biochemical, and serological tests for
infectious or chronic diseases and consisted of 37
(47.4 %) females and 41 (52.6 %) males.

CXCL12 genetic polymorphism

The electrophoretic profile of rs1801157 CXCLI2 poly-
morphism is represented in Fig. 1la, b. Figure la shows
the PCR fragment of 293 bp and the Mspl enzyme cut
amplicons without the polymorphic variant. Thus, the
CXCL12 GG genotype produces 100 and 193 bp prod-
ucts; the AA genotype produces a 293 bp, and the

heterozygote genotype GA produces three distinct frag-
ments (Fig. 1b).

The genotype frequency observed for CXCLI2 poly-
morphism for WT patients and controls is represented
in Fig. 1c, in which 78 % (22/32) are carriers of the vari-
ant allele A. The case-control study indicated a strong
positive association of more than fivefold, for A allele
carriers, with WT susceptibility (p = 0.0002) (Fig. 1d).

FOXP3 genetic polymorphisms

In the present study, we also investigated two single nu-
cleotide polymorphisms (SNPs) on the promoter region
of FOXP3 gene. The electrophoretic profile for poly-
morphism rs3761548 can be observed in Fig. 2a. As
illustrated in Fig. 2b—left panel, genotype frequencies of
rs3761548 for female patients and controls were as
follows: 47.4 % (9/19) and 54.1 % (20/37) for CC homo-
zygote, 26.3 % (5/19) and 13.5 % (5/37) for CA heterozy-
gote, and 26.3 % (5/19) and 324 % (12/37) for AA

Table 2 Histopathological parameters of Wilms' tumor samples

Presence "
Capsular invasion

Absence 6

Presence 7
Metastasis

Absence 4

Presence 5
Lymph node involvement

Absence 13

| 6

Il 6
Tumor staging Il 3

IV 6

\ 1
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Fig. 1 CXCL12 rs1801157 polymorphism. a Electrophoretic profile of CXCL12 polymorphism. C+ positive control, L ladder 100 bp, S7, 52, S3, 54
samples, NTC no template control. b Electrophoretic profile of Mspl treatment products. C+ positive control for both alleles (GA), L ladder 100 bp,
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Fig. 2 Analysis of FOXP3 rs3761548 polymorphism. a Electrophoretic profile. C+ positive control for allele C and A, L ladder 100 bp, CC wild-type
homozygote genotype, AA variant homozygote, CA heterozygote genotype, NTC no template control. b Genotype frequency of healthy control
(HO) and Wilms' tumor (WT) individuals, in female individuals (left) and male individuals (right). ¢ Odds ratio analysis
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homozygote, respectively. Male patients and control
genotype frequencies for this same polymorphism were
as follows: 69.2 % (9/13) and 61.0 % (25/41) for C hemi-
zygote and 30.8 % (4/13) and 39.0 % (16/41) for A hemi-
zygote (Fig. 2b—right panel).

In this work, no significant association was observed
for AA homozygotes or A allele carriers in relation to
WT susceptibility (p >0.05; Fig. 2c). Moreover, A allelic
frequency of rs3761548 was higher in WT patients
(62.5 %) than in the control group (58.97 %).

Regarding the FOXP3 rs2232365 polymorphism, elec-
trophoretic profile is represented in Fig. 3a. The geno-
type frequency observed was 63.2 % (12/19) and 37.8 %
(14/37) for AA homozygotes, 21.0 % (4/19) and 43.3 %
(16/37) for AG heterozygotes, and 15.8 % (3/19) and
18.9 % (7/37) for GG homozygote, for female patients
and controls, respectively. The genotype frequencies for
male patients and controls were as follows, respectively:
85.6 % (11/13) and 39.0 % (16/41) for A hemizygotes
and 15.4 % (2/13) and 61.0 % (25/41) for G hemizygotes
(Fig. 3b). Some products of AS-PCR for rs3761548 and
rs2232365 were confirmed by direct automated
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sequencing of PCR products using BigDye terminator
chemistry kit and 3500 Genetic Analyzer.

The case-control study indicated that G allele carriers
of FOXP3 polymorphism rs2232365 were negatively as-
sociated with WT susceptibility, comparing male individ-
uals (OR 0.1164; 95 % CI 0.0227 to 0.5954; p = 0.0091),
and when male and female subjects were analyzed to-
gether (OR=0.1304; 95 % CI 0.05013 to 0.3394; p<
0.0001) (Fig. 3c).

Discussion

Studies have shown that WT cells express markers of
early kidney development [28, 29]. In addition, several
studies have highlighted the presence and importance
of CXCL12 and CXCR4 during kidney maturation
[13, 30-32]. In this context, genotype frequencies of
CXCL12 polymorphism rs1801157 have been investigated
in order to address its possible role in tumor pathogenesis
in different conditions, including acute lymphoblastic
leukemia [16], chronic myelogenous leukemia [33], breast
cancer [34, 35], and Hodgkin’s lymphoma and non-
Hodgkin’s lymphoma [35]. However, there was no study in
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Fig. 3 Analysis of FOXP3 rs2232365 polymorphism. a Electrophoretic profile. C+ positive control for allele A and G, L ladder 100 bp, AA wild-type
homozygote genotype, GG mutant homozygote genotype, AG heterozygote genotype, NTC no template control. b Genotype frequency of
healthy control (HC) and Wilms' tumor (WT) individuals, in female individuals (left) and male individuals (right). € Odds ratio analysis
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literature indicating the frequency of this polymorphism
in WT patients. In the present case-control study, it was
verified a strong positive association for A allele carriers
and WT susceptibility (Fig. 1).

Polymorphisms in regulatory regions can change protein
expression and may be associated with susceptibility to cer-
tain diseases [27]. In fact, the rs1801157 polymorphism is
located at a regulatory region of CXCLI2; however, there
are conflicting results about the influence of this poly-
morphism in protein expression. Some studies have shown
that A allele carriers have increased CXCL12 protein levels
[27, 36]; on the other hand, de Oliveira et al. [34] observed
that A allele carriers had low levels of CXCL12 messenger
RNA (mRNA) compared to GG genotype.

These contrast CXCL12 expression patterns might
represent different techniques (serum ELISA, mRNA ex-
pression, blot analysis) or biological samples tested (per-
ipheral blood, cultured cells). Moreover, prospective
studies should be developed in order to provide rational
conclusions on how CXCL12 rs1801157 genotypes
would influence gene transcription and/or translation.

It is known that spatial and temporal relationship
between CXCL12- and CXCR4-positive cells are re-
quired for a regular kidney development [13]. In light of
our results, the authors would suggest that A allele car-
riers, which may express altered CXCL12 levels, could
be more susceptible to kidney development disruption.

FOXP3 is an X-linked gene that encodes a transcription
factor, which is essential in CD4"CD25"FOXP3 regulatory
T (Treg) cells [37]. Treg cells may contribute to tumori-
genesis by suppressing immune responses from host, and
mutations of this gene have already been reported in can-
cer patients [38]. To date, there are no studies investigat-
ing FOXP3 polymorphisms in WT patients. Regarding the
abovementioned, investigation of possible association of
FOXP3 genetic variants in WT may shed light on the mo-
lecular pathogenesis of this neoplasia, opening up new
paths to screening susceptible individuals.

Although AA homozygotes for rs3761548 FOXP3 poly-
morphism have been considered susceptible to breast neo-
plasia [24], no significant association was observed for AA
homozygotes or A allele carriers in relation to WT suscep-
tibility (Fig. 2c). Furthermore, allelic distribution of
rs3761548 A allele in WT patients was slightly different
from that in the control group. Concerning FOXP3
rs2232365 polymorphism, the case-control study indicated
that G allele is negatively associated with WT susceptibil-
ity in male individuals and when males and females sub-
jects were analyzed together (Fig. 3c).

The FOXP3 rs2232365 polymorphism is located within
a putative DNA-binding site of another transcription
factor, GATA-3, that directly regulates FOXP3 expres-
sion, in addition to controlling Treg cell function via
interaction with the regulatory regions of the FOXP3
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locus. GATA-3 is essential to Th2 immune response [39]
and can only bind the FOXP3 promoter region if the A
allele is present [40]. The GG genotype of rs2232365
was observed to decrease FOXP3 expression, affecting
Treg cell function by disruption of the Th1/Th2 balance
[40]. Conventionally, Th2-mediated immunity has been
considered to favor tumor growth, by promoting angio-
genesis as well inhibiting cell-mediated immunity and
tumor cell killing [41, 42]. Hence, we inferred that high
frequencies of G allele might affect Treg function and
decrease Th2 immune response, leading to a protective
effect against tumor development.

FOXP3 transcription factor has different expression
patterns in a great variety of cell types, and its role in
cancer remains unclear. Nowadays, it is well established
that this protein can be expressed by different cell types,
aside from its expression in Tregs, which include normal
[21] and tumor [20, 43] cells. Studies have supported
that FOXP3 protein also has different roles, acting as a
tumor suppressor protein [21], or as evading mecha-
nisms for tumors, when expressed by Tregs [44]. In
breast cancer, the FOXP3 has been described as a tran-
scriptional repressor of genes involved in tumor devel-
opment, like HER2 and SKP2 [21], and also in cancer
progression, like CXCR4 [26].

Notwithstanding, AA homozygous samples for rs376
1548 and rs2232365 of FOXP3 polymorphisms, consid-
ered variant and ancestral genotypes, respectively, pre-
sented larger tumor size (>8 cm). This could suggest
that certain genotypes of FOXP3 gene might contribute,
in some way, to disease prognosis.

In another study [24], the variant genotype AA of
FOXP3 was also positively associated with tumor size, in
triple negative breast cancer. Taken together, these results
may indicate a role for this marker in cancer progression,
raising new possibilities for research, targeting FOXP3.

Conclusions

In conclusion, the present study demonstrated that FOXP3
rs2232365 is negatively and CXCLI12 rs1801157 is positively
associated with WT susceptibility. Although the number of
WT patients in this case-control study was small, the inci-
dence of this cancer is relatively rare in population. Thus,
this study demonstrated, for the first time, an association
between FOXP3 and CXCL12 genetic polymorphisms with
this cancer, demonstrating that these markers are, some-
how, involved in WT pathogenesis. Further studies are
needed to define the precise roles in this process.
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